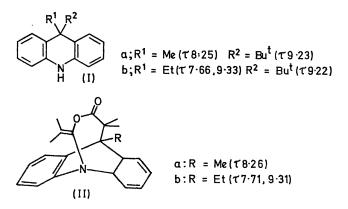
The Conformation of 9,10-Dihydroacridines

By G. A. TAYLOR*

(Department of Chemistry, University of Sheffield, Sheffield S3 7HF)

and S. A. PROCTER


(Department of Pure and Applied Science, Doncaster College of Technology, Doncaster, Yorks.)

Summary The n.m.r. spectra of a series of 9-substituted 9,10-dihydroacridines are consistent with a preferred conformation having a boat-shaped central ring with the more bulky 9-substituent in a ψ -axial orientation.

RECENT interest¹ in the conformation of 9,10-dihydroanthracenes prompts us to report our results in a study of 9-substituted 9,10-dihydroacridines (I). A series of these containing all combinations of the substituents H. Me, Et, Pr^{i} , and Bu^{t} (except for $R^{1} = Pr^{i}$, $R^{2} = Bu^{t}$, and $R^{1} = R^{2}$ $= Bu^{t}$) has been prepared and the n.m.r. spectra measured for deuteriochloroform solutions. In all cases where $R^1 =$ \mathbb{R}^2 the two substituent groups are magnetically equivalent, indicating a planar time-average structure. Models suggest that the lowest energy conformation of (I; $R^1 = R^2 = H$) has a flattened, boat-shaped central ring with a very low barrier to inversion.

Comparison of the n.m.r. spectra of a series of these compounds, in which R¹ remains constant and R² varies from H to Bu^t, shows interesting trends in the τ values of R^1 . For the series $R^1 = Me$, the signal due to R^1 moves steadily downfield from τ 8.66 to 8.25 as R² progresses from H to Bu^t. Likewise, the signal due to the CH, group in the series $R^1 = Et$ moves from τ 8.37 to 7.66 whereas the CH₂ signal of the ethyl group varies in an irregular fashion between τ 9.40 and 9.25. For $\mathbb{R}^1 = \mathbb{P}r^1$ the methine proton signal decreases from τ 8.23 when $R^2 = H$ to τ 7.48 when $R^2 = Pr^1$. These variations are taken to indicate an increasing population of a preferred conformation as R² changes from a small to a bulky group. Models suggest

that the preferred contormation will be that in which the larger substituent at the 9-position is in a ψ -axial orientation and confirmation for this comes from a comparison of the spectra of (Ia) and (Ib) with the bridged compounds (IIa) and (IIb).² Chemical shifts for the relevant groups are given beside the diagrams.

Surprisingly, for the series $R^1 = H$, $R^2 = H$ —Bu^t the signal due to \mathbb{R}^1 moves steadily upfield from au 5.95 to 6.37 as R² increases in size. This behaviour must be due to the different position of the H atom with respect to the boundary between the shielding and deshielding zones of the aromatic systems.

(Received, October 2nd, 1969; Com. 1490.)

¹ A. L. Ternay, A. W. Brinkmann, S. Evans, and J. Herrmann, Chem. Comm., 1969, 654, and references therein; J. MacMillan and E. R. H. Walker, Chem. Comm., 1969, 1031. ² S. A. Procter and G. A. Taylor, J. Chem. Soc. (C), 1967, 1937.